Taubmann GmbH

Am Berglein 3 95336 Mainleus-Rothwind

Telefon 09229/7083 Telefax 09229/8588

E-Mail: info@analab-taubmann.de

GF: Dr. Silke Taubmann, Dr. Sandra Taubmann

Registergericht Bayreuth HRB 2736

St.-Nr.: 20812150473, Ust.-Id.: DE188834591

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfver-

Zeichen

Gä

Datum

05.12,2023

Prüfbericht Nr.:

analab Taubmann GmbH · Am

Stadtwerke Kulmba

Hofer Straße 14

95326 Kulmbach

Herrn Voß

2311128-1

Untersuchung:

Trinkwasseruntersuchung gemäß TrinkwV a.F.

Parameter Gruppe A und B - ohne PSM

Probenahemeort/-stelle: TWA Kulmbach

Objektkennzahl:

1230/5834/00052

Probenbeschreibung:

Trinkwasser

Mischungsverhältnis Brunnen/ Grundmühle in %: 35/65

Probenahme durch:

analab Taubmann GmbH

Probenehmer (Name):

Frau Birk

Probenahmeart:

(DIN, Beschreibung)

DIN EN ISO 19458 (K19) (2006-12) Zweck A; DIN ISO 5667-5 (A14)

(2011-02); Pb,Cu, Ni: Zufallsstichprobe (Z-Probe) gem. UBA (2018)

(Entnahmehahn ist dauerhaft leicht geöffnet)

Probenahmedatum:

06.11.2023

Probenahmeuhrzeit: 13:26

Probeneingang Labor:

06.11.2023

Proben-Nr: (anlab-Nr.)

2311128-1

Untersuchungszeitraum: 06.11. -05.12.2023

Hinweis für gem. TrinkwV geforderte Untersuchungen und Untersuchungsergebnisse:

Wir weisen Sie darauf hin, dass jeder Wasserversorger gem. §16 TrinkwV 2001 i.d.g.F. verpflichtet ist, unverzüglich jede Grenzwertüberschreitung sowie jedes Erreichen bzw. Überschreiten des technischen Maßnahmenwertes, den zuständigen Überwachungsbehörden anzuzeigen. Zudem ist jeder Wasserversorger nach § 15 TrinkwV 2001 i.d.g.F. verpflichtet eine Kopie der Niederschrift innerhalb von zwei Wochen nach dem Zeitpunkt der Untersuchung dem Gesundheitsamt zu übersenden. Falls Sie unser Labor mit der Weitergabe der Ergebnisse an die zuständige Behörde beauftragt haben, geschieht dies durch uns:

Das Prüfergebnis wurde an die zuständige Behörde weitergeleitet: 💢 ja

Prüfbericht: 2311128-1

Seite 2 von 3

Untersuchungsergebnisse - Trinkwasseruntersuchung gem. TrinkwV a.F.

Probe-Nr.: 2311128-1

Probenahmedatum: 06.11.2023

Objektkennzahl: 1230/5834/00052

Mikrobiologische Untersuchungen: TrinkwV Anlage 1 und 3

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren
Koloniezahl (22 °C)*	0	100	KBE/ml	TrinkwV 2023 § 43 Abs. 3
Koloniezahl (36 °C)	0	100	KBE/ml	TrinkwV 2023 § 43 Abs. 3
Coliforme Bakterien	0	0	KBE/100ml	DIN EN ISO 9308 (K12) (9/2017)
Escherichia coli	0	0		DIN EN ISO 9308 (K12) (9/2017)
Enterokokken	0	0	KBE/100 ml	DIN EN ISO 7899 (K15) (11/2000)
Clostridium perfringens	0	0	KBE/100ml	DIN EN ISO 14189 (K24) (11/2016)

*unmittelbar nach Aufbereitung (im desinf. Wasser): 20KBE/ml; Wasserversorger nach §3 Nr. 2c (Kleinanlagen <10m³/d): 1000KBE/ml

Physikalisch Chemische Untersuchungen: TrinkwV Anlage 2 Teil I

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren
Acrylamid		0,00010	mg/l	Fremdlabor (Fresenius)
Benzol	<0,3	1,0	µg/l	DIN 38407 - F43 (10/2014)
Bor	<0,1	1,0	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Bromat	<0,003	0,010	mg/l	DIN EN ISO 15061 (D34) (12/2001)
Chrom	<0,0005	0,025	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Cyanid	<0,002	0,050	mg/l	DIN 38405 - D13 (4/2011)
1,2 Dichlorethan	<0,5	3,0	μg/l	DIN 38407 - F43 (10/2014)
Fluorid	0,080	1,5	mg/l	DIN EN ISO 10304-1 (D20) (7/2009)
Nitrat	8,9	50	mg/l	DIN EN ISO 10304-1 (D20) (7/2009)
Quecksilber	<0,0002	0,0010	mg/l	DIN EN ISO 17852 (E35) (4/2008)
Selen	<0,003	0,010	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Tetra-/Trichlorethen	<1	10	µg/l	DIN 38407 - F43 (10/2014)
Uran	7,0	10	µg/l	Fremdlabor (agrolab)

Physikalisch Chemische Untersuchungen: TrinkwV Anlage 2 Teil II

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren
Antimon	<0,001	0,0050	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Arsen	<0,003	0,010	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Benzo-(a)-pyren	<0,003	0,010	µg/l	DIN 38407 - F39 (09/2011)
Blei	<0,003	0,010	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Cadmium	<0,0005	0,0030	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Epichlorhydrin		0,10	µg/l	Fremdlabor (Fresenius)
Kupfer	<0,01	2,0	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Nickel	<0,002	0,020	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Nitrit	<0,01	0,50	mg/l	DIN EN 26777 (D10) (4/1993)
Nitrat/50+Nitrit/3	0,18	1	mg/l	Berechnung
PAK (Summe)	<0,01	0,10	µg/l	DIN 38407 - F39 (9/2011)
THM	<1	50	µg/l	DIN 38407 - F43 (10/2014)
Vinylchlorid	<0,0001	0,00050	mg/l	DIN 38407 - F43 (10/2014)

Physikalisch Chemische Untersuchungen: TrinkwV Anlage 3 Teil I

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren
Aluminium	<0,01	0,200	mg/l	
Ammonium	<0,02	0,50		DIN EN ISO 11885 (E22) (9/2009)
Chlorid	25		mg/l	DIN 38406 - E5 (10/1983)
Eisen		250	mg/l	DIN EN ISO 10304-1 (D20) (7/2009
	<0,01	0,200	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Färbung (SAK 436nm)	<0,05	0,5	m ⁻¹	DIN EN ISO 7887 (C1) (4/2012)
Geruch	ohne	ohne anormale \	/eränderung	DIN EN 1622 (10/2006) Anhang C
Geschmack	ohne	ohne anormale \	/eränderung	DIN EN 1622 (10/2006) Anhang C
Leitfähigkeit (bei 25°C)	368	2790	µS/cm	
Mangan	<0,005	0,050		DIN EN 27888 (C8) (11/1993)
Natrium	11,7		mg/l	DIN EN ISO 11885 (E22) (9/2009)
TOC		200	mg/l	DIN EN ISO 11885 (E22) (9/2009)
	0,73	ohne anormale Veränderung	mg/l	DIN EN 1484 (H3) (8/1997)

Prüfbericht: 2311128-1

Untersuchungsergebnisse - Trinkwasseruntersuchung gem. TrinkwV a.F.

Probe-Nr.: 2311128-1

Probenahmedatum: 06.11.2023

Objektkennzahl: 1230/5834/00052

Physikalisch Chemische Untersuchungen: TrinkwV Anlage 3 Teil I

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren		
Oxidierbarkeit		mg/l	mg/l	DIN EN ISO 8467 (H5) (1995/05)		
Sulfat	27	250	mg/l	DIN EN ISO 10304 (D20) (07/2009)		
Trübung	<0,1	1,0	TE/F	DIN EN ISO 7027 (C2) (4/2000)		
pH-Wert	8,1	6,5 - 9,5	***	DIN EN ISO 10523 (C5) (04/2012)		
Calcitlösekapazität**	-2,2	5	mg/l	DIN 38404-C10 (12/2012)		

"GW=10 mg/l bei Mischungen aus mehreren Wasserwerken

Sonstige Parameter:

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren
Säurekapazität (pH 4,3)	2,40	1000	mmol/l	DIN 38409 - H7 (12/2005)
Basekapazität (pH 8,2)	0,07		mmol/l	DIN 38409 - H7 (12/2005)
Gesamthärte	1,61	abe:	mmol/l	Berechnung
Gesamthärte	9,0		°dH	Berechnung
Carbonathärte	6,6	505	°°dH	Berechnung
Sättigungsindex	0,14		E	Berechnung
pH-C	7,94	***	mg/l	Berechnung
Calcium	38,0	***	mg/l	DIN EN ISO 11885 (E22) (9/2009)
Magnesium	15,9		mg/l	DIN EN ISO 11885 (E22) (9/2009)
Kalium	4,43		mg/l	DIN EN ISO 11885 (E22) (9/2009)
Sauerstoff	10,8	###()	mg/l	DIN EN ISO 5814 (G22) (02/2013)
Wassertemperatur	10,9	MARK!	°C	DIN 38404 - C4 (12/1976)

Kurzbewertung:

Im Rahmen des Untersuchungsumfangs sind die geltenden Grenzwerte bzw. Forderungen der TrinkwV 2023 eingehalten.

Rothwind, den 05,12.2023

Dr. Silke Taubmann Dipl. Chem. (Geschäftsführerin)

Dr. Sandra Taubmann Dipl. Chem. (Geschäftsführerin) Dr. Jürgen Knott Dipl. Biol. (Laborleiter)

analab Taubmann GmbH - Am Berglein 3 - 95336 Mainleus

Stadtwerke Kulmbach Herrn Voß Hofer Straße 14

95326 Kulmbach

Am Berglein 3 95336 Mainleus-Rothwind

Telefon 09229/7083 Telefax 09229/8588

E-Mail: info@analab-taubmann.de

GF: Dr. Silke Taubmann, Dr. Sandra Taubmann

Registergericht Bayreuth HRB 2736

St.-Nr.: 20812150473, Ust.-Id.: DE188834591

Die Akkreditierung ailt für die in der Urkunde aufgeführten Prüfver-

Zeichen

Datum

ST

Probenahmeuhrzeit: 13:26

01.12.2023

Prüfbericht Nr.:

2311128-1-PSM

Untersuchung:

Trinkwasseruntersuchung gemäß TrinkwV a.F.

Pflanzenschutzmittel

Probenahemeort/-stelle:

TWA Kulmbach

Objektkennzahl:

1230/5834/00052

Probenbeschreibung:

Trinkwasser Mischungsverhältnis Brunnen/ Grundmühle in %: 35/65

Probenahme durch:

analab Taubmann GmbH

Probenehmer (Name):

Frau Birk

Probenahmeart:

DIN EN ISO 19458 (K19) (2006-12) Zweck A

(DIN, Beschreibung)

DIN ISO 5667-5 (A14) (2011-02)

Probenahmedatum:

06.11.2023

Probeneingang Labor:

06.11.2023

Proben-Nr: (anlab-Nr.)

2311128-1

Untersuchungszeitraum: 06.11.-20.11.2023

Hinweis für gem. TrinkwV geforderte Untersuchungen und Untersuchungsergebnisse:

Wir weisen Sie darauf hin, dass jeder Wasserversorger gem. §16 TrinkwV 2001 i.d.g.F. verpflichtet ist, unverzüglich jede Grenzwertüberschreitung sowie jedes Erreichen bzw. Überschreiten des technischen Maßnahmenwertes, den zuständigen Überwachungsbehörden anzuzeigen. Zudem ist jeder Wasserversorger nach § 15 TrinkwV 2001 i.d.g.F. verpflichtet eine Kopie der Niederschrift innerhalb von zwei Wochen nach dem Zeitpunkt der Untersuchung dem Gesundheitsamt zu übersenden. Falls Sie unser Labor mit der Weitergabe der Ergebnisse an die zuständige Behörde beauftragt haben, geschieht dies durch uns:

Das Prüfergebnis wurde an die zuständige Behörde weitergeleitet: x ja

Prüfbericht: 2311128-1-PSM

Untersuchungsergebnisse - Trinkwasseruntersuchung gem. TrinkwV a.F. - PSM

Probe-Nr.: 2311128-1

Probenahmedatum: 06.11.2023

Objektkennzahl: 1230/5834/00052

Physikalisch Chemische Untersuchungen: TrinkwV Anlage 2 Teil I, Nr. 10 und 11

Parameter	Messergebnis	Grenzwert	Einheit	Verfahren
PSM-Summe	<bg< th=""><th>0,5</th><th>µg/l</th><th>DIN EN ISO 10695 (F 6) (2000-11)</th></bg<>	0,5	µg/l	DIN EN ISO 10695 (F 6) (2000-11)
Atrazin	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)
Desethylatrazin	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)
Desethylterbuthylazin	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)
Desisopropylatrazin	<0,02	0,1	µg/l	DIN EN ISO 10695 (F 6) (2000-11)
Metazachlor	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)
Metolachlor (R/S)	<0,02	0,1	µg/l	DIN EN ISO 10695 (F 6) (2000-11)
Propazin	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)
Simazin	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)
Terbuthylazin	<0,02	0,1	μg/l	DIN EN ISO 10695 (F 6) (2000-11)

Kurzbewertung:

Im Rahmen des Untersuchungsumfangs sind die geltenden Grenzwerte bzw. Forderungen der TrinkwV 2023 eingehalten.

Rothwind, den 01.12.2023

Dr. Silke Taubmann Dipl. Chem. (Geschäftsführerin) Dr. Sandra Taubmann Dipl. Chem. (Geschäftsführerin) Dr. Jürgen Knott Dipl. Biol. (Laborleiter)

analab Taubmann GmbH - Am Berglein 3 - 95336 Mainleus

Stadtwerke Kulmbach Hoferstr. 14

95326 Kulmbach

Taubmann GmbH

Am Berglein 3 95336 Mainleus-Rothwind

Telefon 09229/7083 Telefax 09229/8588

E-mail: info@analab-taubmann.de

GF: Dr. Silke Taubmann, Dr. Sandra Taubmann

Registergericht Bayreuth HRB 2736

St.-Nr.: 20812150473, Ust.-Id.: DE188834591

Zeichen Gä

Datum 05.12.2023

Prüfbericht: 231128/1b

Seite 1 von 2

Untersuchung:

Trinkwasseruntersuchung gemäß TrinkwV

Probenahmeort/-stelle:

TWA Kulmbach

Probenbeschreibung:

Trinkwasser

Probenahme durch:

Fa. analab Taubmann GmbH

Probenehmer (Name):

Frau Birk

Probenahmeart:

Mikro: DIN EN ISO 19458 (K 19) (2006-12), Zweck a

(DIN, Beschreibung)

Phys./Chem.: DIN ISO 5667-5 (A 14) (2011-02)

Probenahmedatum:

06.11.2023

Uhrzeit:

siehe Bericht

Probeneingang - Labor: 06.11.2023

Proben-Nr. (analab-Nr.): 23 11 128/1

Untersuchungszeitraum 06.11. - 05.12.2023

Hinweis für gem. TrinkwV geforderte Untersuchungen und Untersuchungsergebnisse: Wir weisen Sie darauf hin, dass jeder Wasserversorger gemäß §47 TrinkwV 2023 verpflichtet ist, unverzüglich jede Grenzwertüberschreitung sowie jedes Erreichen des technischen Maßnahmenwertes, den zuständigen Überwachungsbehörden anzuzeigen. Zudem ist jeder Wasserversorger nach § 44 TrinkwV 2023 verpflichtet eine Kopie der Niederschrift innerhalb von zwei Wochen nach dem Abschluss der Untersuchung dem Gesundheitsamt zu übersenden. Falls Sie unser Labor mit der Weitergabe der Ergebnisse an die zuständige Behörde beauftragt haben, geschieht dies durch uns:

Das	Prüfergebnis	wurde a	auftragsgemäß	an die	zuständige	Behörde	weitergeleitet:	\boxtimes	ja	\square	neir
-----	--------------	---------	---------------	--------	------------	---------	-----------------	-------------	----	-----------	------

Prüfbericht: 2311128/1b

Seite 2 von 2

Untersuchungsergebnis:

Me: ste		nd Probenahme-	Kenn- zahl	1230/5834/00052						
			Name	TWA Kulmbach, Reinwasser						
Wa	ssera	ewinnungsanlag		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT						
Pro	ben-I	D des Labors:		2311128-1						
	benal		Datum	06.11.2023						
			Uhrzeit							
Pro	beng	ewinnung:		Stichprobe	Me- dium		wasser ka	lt		
Mes	sspro	gramm:								
		meter				Son-	Mess-	Ein-	Probenvorbe-	
						der- zei- chen	wert/ Unter- schl.	heit	handlung	
1	2608	Bisphenol A				<	0,04	µg/l		
2	8011	Perfluorbutansäu	ıre			<	0,0015			
3	8010	Perfluorpentansä	iure			<	0,001	µg/l		
4		Perfluorhexansäure					0,0013			
5	8003	Perfluorheptansäure				<	0,001	µg/l		
3	8000					<	0,001	µg/l		
7	8004	Perfluornonansä	ure			<	0,001	µg/l		
3	8005	Perfluordecansäi	ure			<	0,001	µg/l		
}	8013	Perfluorundecans	säure			<	0,001	µg/l		
10	8007	Perfluordodecans	säure			<	0,0015	µg/l		
11	8025	Perfluortridecans	äure			<	0,0017	μg/l		
12		Perfluorbutansulf				<	0,001	µg/l		
13	8019	Perfluorpentansu				<	0,001	μg/l		
14	8008	. cindomonanoai				<	0,001	µg/l		
15		Perfluorheptansu				<	0,001	µg/l		
16		Perfluoroctansulf				<	0,001	µg/l		
17		Perfluornonansul				<	0,001	µg/l		
18		Perfluordodecans				<	0,001	μg/l		
9		Perfluorundecans				<	0,001	µg/l		
20		Perfluortridecans				<	0,001	µg/l		
21				ungen (TrinkwV 2023			0,0013	µg/l		
22	0846	Summe 4 PFAS- PFNA) - (Trinkw\		ngen (PFHxS, PFOA	, PFOS,	<	0,001	µg/l		

Kurz-Beurteilung:

Die untersuchten Parameter weisen derzeit noch keinen gültigen Grenzwert der TrinkwV auf. Zur Orientierung sind nachfolgend die zukünftig gültigen Grenzwerte der TrinkwV 2023 aufgeführt:

Parameter	Grenzwert	gültig ab	Untersuchungsverfahren
Bisphenol A	2,5 µg/l	12.01.2024	Fremdlabor AIR
PFAS-20	0,10 µg/l	12.01.2026	Fremdlabor AIR
PFAS-4	0,020 µg/l	12.01.2028	Fremdlabor AIR

Die Untersuchungsergebnisse erhalten ihre Freigabe mit nachfolgender Unterschrift.

Dr. Si. Taubmann Geschäftsleitung, Dipl. Chem.

Dr. Sa. Taubmann Geschäftsleitung, Dipl. Chem. Dr. Karen Popp Stellv. Laborleiterin, Dipl. Leb. Chem.

Analytik Institut Rietzler GmbH | Dieter-Streng-Str. 5 | 90766 Fürth

analab Taubmann GmbH Am Berglein 3 95336 Mainleus-Rothwind Analytik Institut Rietzler GmbH Laborstandort Fürth Dieter-Streng-Str. 5 90766 Fürth

Telefon 0911 971 91-0 Telefax 0911 971 91-299

labor-fuerth@rietzler-analytik.de www.rietzler-analytik.de

PRÜFBERICHT AB2316255-6/ANAMAI21-vh

Auftraggeber:

analab Taubmann GmbH

Auftraggeber Adresse:

Am Berglein 3, 95336 Mainleus-Rothwind

Ihr Zeichen/Bestell-Nr.:

Probenahmeort:

keine Angaben

Probenehmer:

Auftraggeber keine Angaben

Probenahmedatum: Probeneingangsdatum:

09.11.2023

Prüfzeitraum:

09.11.2023 - 05.12.2023

Gesamtseitenzahl:

2

Untersuchungsergebnis Trinkwasser

Probenbezeichnung	2311128-1							
Labornummer	Labornummer							
Probenahmedatum								
Parameter	Methode	Einheit	Grenzwert					
Uran	DIN EN ISO 17294-2 (E29):2017-01*	mg/l		0,007				
Bisphenol A	DIN EN ISO 18857-2:2012-01 (F32)*, mod.	µg/l		<0,04				
Perfluorbutansäure (PFBA)	E DIN EN 17892:2022-09*	μg/l		<0,0015				
Perfluorpentansäure (PFPeA)	E DIN EN 17892:2022-09*	µg/l		<0,001				
Perfluorhexansäure (PFHxA)	E DIN EN 17892:2022-09*	µg/l		0,0013				
Perfluorheptansäure (PFHpA)	E DIN EN 17892:2022-09*	μg/l		<0,001				

Der Prüfbericht darf ohne schriftliche Genehmigung des Prüflabors nicht auszugsweise vervielfältigt werden. | Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Proben, wie erhalten. Bei der Bewertung der Konformität mit den Regelwerken wird die MU nicht berücksichtigt, | Die Akkreditierung gilt für die im Prüfbericht mit * gekennzeichneten Prüfverfahren.

Zugelassen nach AbfKlärV, DüV

Untersuchungsstelle nach §6 Abs., 6 der Altholzverordnung

Akkredillert nach DIN EN ISO/IEC 17025:2018-03

(DAkks Akkreditierungsstelle D-PL-14501-01-00

Untersuchungsstelle nach §18 BBodSchG

Messstelle nach §29b BlmSchG, §42 BlmSchV Untersuchungsstelle nach §15 Abs. 4 TrinkwV

Zugelassen nach §3 Laborverordnung

AB2316255-6/ANAMAI21-vh

Untersuchungsergebnis Trinkwasser

Probenbezeichnung	2311128-1			
Labornummer	AP2373922			
Probenahmedatum				
Parameter	Methode	Einheit	Grenzwert	
Perfluoroctansäure (PFOA)	E DIN EN 17892;2022-09*	µg/l		<0,001
Perfluornonansäure (PFNA)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluordecansäure (PFDA)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluorundecansäure (PFUnA)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluordodecansäure (PFDoA)	E DIN EN 17892;2022-09*	μg/l		<0,0015
Perfluortridecansäure (PFTrDA)	E DIN EN 17892;2022-09*	μg/l		<0,0017
Perfluorbutansulfonsäure (PFBS)	E DIN EN 17892:2022-09*	μg/l		<0,001
Perfluorpentansulfonsäure PFPeS)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluorhexansulfonsäure PFHxS)	E DIN EN 17892:2022-09*	μg/l		<0,001
Perfluorheptansulfonsäure PFHpS)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluoroctansulfonsäure (PFOS)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluorononansulfonsäure PFNS)	E DIN EN 17892:2022-09*	µg/l		<0,001
Perfluordecansulfonsäure PFDS)	E DIN EN 17892:2022-09*	μg/l		<0,001
Perfluoro-1-Undecansulfonsäure PFUdS)	E DIN EN 17892;2022-09*	μg/l		<0,001
erfluordodecansulfonsäure PFDoS)	E DIN EN 17892:2022-09*	μg/l		<0,001
erfluoro-1-tridecansulfonsäure PFTrDS)	E DIN EN 17892:2022-09*	µg/l		<0,001
umme PFT	E DIN EN 17892:2022-09*	μg/l		0,0013

Analytik Institut Riotzier embH, Fürth, den 05.12.2023

i.V. D. Katharina Reich Dr. rer. nat. Anorg Chemie Kundenbetreuung

Korrosionschemische Bewertung:

1. Kupfer- und Kupferlegierungen (DIN EN 12502-2)

Allgemein (DIN 50930-	6)	NAME OF TAXABLE PARTY.		1 - 3
Parameter	Einheit	Messwert	Bewertungskriterium(Anforderung)	Anforderung eingehalten
pH-Wert		8,1	≥ 7,4	
тос	mg/l	0,73	Oder 7,0 ≤ pH > 7,4 und TOC≤ 1,5 mg/l	ja

Parameter	Einheit	Messwert	Bewertungskriterium (Anforderung)	Anforderung eingehalten
oH-Wert		8,1	> 7,50	
			und	ja
Säurekapazität bis pH 4,3	mmol/l	2,40	≥ 1 mmol/l	,
nögliche Maßnahme (Verringerung der (Geschwindigkeit de	r Flächenkorros	s(on):	
Zugabe von Inhibitoren (z.B. Ortho		The state of the s	2011/2	

arameter	Einheit	Messwert	Bewertungskriterium (Anforderung)	Anforderung
	Lillion	Messwert	Dewertungskriterium (Amorderung)	eingehalten
$c_3 = \frac{c(HCO_3^-)}{c(SO_4^{2^-})}$		8,24	≥ 1,5	
H-Wert		8,1	oder ≥ 7,0 oder	ja
äurekapazität bis pH 4,3 ögliche Maßnahme zur Reduzlerung der	mmol/l	2,40	≥ 1,5 mmol/l	

Der Hydrogencarbonatgehalt ist ausreichend hoch, um haftende Deckschichten zu bilden. Die Korrosionsrate ist auf Grund des hohen pH-Wertes gering.

Die Wahrscheinlichkeit für Lochkorrosion in erwärmtem Wasser ist niedrig. Die Wahrscheinlichkeit von Entzinkung ist nach Turner gering, die Konzentration an Chlorid liegt bei 60% des Grenzwertes nach Turner.

2. Schmelztauchverzinkte Eisenwerkstoffe (DIN EN 12502-3)

Allgemein (DIN 50930-6)	the same of the sa			
Parameter	Einheit	Messwert	Bewertungskriterium (Anforderung)	Anforderung eingehalten
Basekapazität bis pH 8,2	mmol/l	0,07	≤ 0,2 und	
$S_1 = \frac{c(CI^-) + c(NO_3^-) + 2c(SO_4^{2-})}{c(HCO_3^-)}$		0,61	<1	ja

Parameter	Einheit	Messwert	Bewertungskriterium (Anforderung)	Anforderung eingehalten
$S_1 = \frac{c(CI^-) + c(NO_3^-) + 2c(SO_4^{2-})}{c(HCO_3^-)}$		0,61	< 0,5	
Calciumionen	mg/l	38,0	und ≥ 20 mg/l und	nein
Säurekapazität bis pH 4,3	mmol/l	2,40	≥ 2,0 mmol/l	

Anlage zum Prüfbericht: 2311128-1

Abschätzung der Korrosionswahrscheinlichkeit von metallischen Werkstoffen in Abhängigkeit der Wasserbeschaffenheit - **DIN EN 12502**

Selektive Korrosion (DIN	EN 12502-3)			200
Parameter	Einheit	Messwert	Bewertungskriterium (Anforderung)	Anforderung eingehalten
$S_2 = \frac{c(CI^-) + 2c(SO_4^{2-})}{c(NO_3^-)}$		8,76	< 1 oder > 3	
			oder	ja
Nitrat	mg/l	8,9	< 18,6	
mögliche Maßnahme zur Reduzier				
Die selektive Korrosion kann durch	Änderung des Anionend	uotienten S ₂ mi	t Hilfe selektiver Anionenaustauscher verringert w	erden.

Die Voraussetzungen für die Ausbildung von schützenden Deckschichten sind erfüllt. Die Wahrscheinlichkeit für gleichmäßige Flächenkorrosion ist klein.

Die Wahrscheinlichkeit für Lochkorrosion bei Anwesenheit von Sauerstoff ist leicht erhöht. S1 liegt zwischen 0,5 und 1. Die Konzentration an Hydrogencarbonat- bzw. Calciumionen ist zu niedrig, um in Kombination als kathodische Inhibitoren zu wirken.

Die Wahrscheinlichkeit für selektive Korrosion ist niedrig.

3. Nichtrostende Stähle (DIN EN 12502-4)

Alle Korrosionsarten (I	DIN 12502-4)			
Parameter	Einheit	Messwert	Bewertungskriterium (Anforde- rung)*	Anforderung eingehalten
Chlorid	mg/l	25	< 53,2 mg/l (Warmwasser) < 212 mg/l (Kaltwasser)	ja

^{*}gilt für molybdänfreie ferritische und austenitische nichtrostende Stähle

Die Korrosionswahrscheinlichkeiten sind sowohl im Kalt- als auch im Warmwasser niedrig.

4. Gusseisen, unlegierte niederlegierte Stähle (DIN EN 12502-5)

Flächenkorrosion (DIN EN 12	502-5)			
Parameter	Einheit	Messwert	Bewertungskriterium (Anforde- rung)	Anforderung eingehalten
Sauerstoff	mg/l	10,8	> 3 mg/l	
pH-Wert		8,1	> 7,0	
Calcium	mg/l	38,0	und > 40 mg/l	nein
Säurekapazität bis pH 4,3	mmol/l	2,40	und > 2 mmol/l	

Hydrogencarbonat- und Calciumgehalt sind für die Ausbildung von Schutzschichten zu niedrig. Die Korrosionsgeschwindigkeit ist aufgrund des Sauerstoffgehalts und des pH-Wertes <8,5 erhöht.

Allgemeine Hinweise

Auf Grund der komplexen Wechselwirkungen zwischen den unterschiedlichen Einflussgrößen können über das Ausmaß von Korrosionserscheinungen im Allgemeinen nur Wahrscheinlichkeitsaussagen getroffen werden; diese Aussagen haben lediglich informativen Charakter und stellen keinesfalls verbindliche Regeln zur Verwendung von metallischen Werkstoffen dar.

Sämtliche korrosionschemische Berechnungen und Bewertungen gelten ausschließlich für das untersuchte Trinkwasser.

Im Falle, dass das untersuchte Trinkwasser mit anderen Wässern gemischt wird, ist für das Mischwasser gesondert eine korrosionschemische Beurteilung durchzuführen.

Sämtliche Wahrscheinlichkeitsangaben basieren auf der angenommenen Voraussetzung, dass im Leitungssystem ein ausreichend hoher Sauerstoffgehalt vorhanden ist (mind. 3,2 mg/l).

Seite 1 von 3

Übersicht Trinkwasser - TWA Kulmbach

anolab Taubmann GmbH Am Berlein 3, 95336 Mainleus-Rothwind Untersuchungsstelle:

	Probein	Probenahmedatum:		29 06 2020	02.11.2020	15 03 2021	-	_		04.07.2022	07.11.2022	13.03.2023	03 07 2023	06 11 2023
Misching (Bringer		mishle) is 0/.	-	I VVA KUIMDACH	I WA Kulmbach	2	TWA Kulmbach	F	TWA Kulmhach	TAVA Kulmhach				
% II (aluminally I MA Gluridinalle) II %		indnie) in %:	_	_	1.	28,8/71,2	65/35	66/34		59/41			54/46	25/65
	δ O	Cojektkennzani	-1	12	1230/5834/00052	1230/5834/00052	1230/5834/00052	1230/5834/00052	1230/5834/00052	1230/5834/00052	1230/5834/00052	1230/5834/00052	47200604602400000	Sold Sold Sold Sold Sold Sold Sold Sold
		Probe-Nr.:	2003204-2	2006590-2	2011005-1	2103342-2	2107075-1	2111168-2	2203255-4	2207055-1	2211101-3	2303240002	2307013 1	1230/3834/00052
Doromotor												7.007007	1-5101052	1-9711157
Mikrobiologische Parameter	Einheit	GW Trinkwv	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwer	Messwort
Valoriant Li vos est.	-													I DANCE COM
Normiezani (22 °C)	KBE/ml	100	4	0	0	0	-	0	0	0	0			
Koloniezahl (36 °C)	KBE/ml	100	1	4	0	0	-	0	0		7		0 6	٥
Escherichia coli	KBE/100ml	0	0	0	0	C	-				- -		0	0
Coliforme Bakterien	KBE/100ml	0	0	0							0	0	0	0
Enterokokken	KBE/100ml	0	0	0				0 0	0	0	0	0	0	0
Clostridium perfringens	KBE/100ml	0	0	0				0 0	0	0	0	0	0	0
Vor-Ort-Parameter und Sensorische Parameter:	orische Paramet							0	0	0	0	0	0	0
Wassertemperatur	٥		18	44.0	1									
Leiffähinkeit hei 25°C	No.	3200	4,0	211	11,1	8,0	11,5	10,1	7,8	10,9	10,5	7,8	10,9	10.9
How Har	10001	27.30	700	2/9	345	279	382	269	258	396	283	269	282	368
Total d	1	c'6 - c'o	8,3	8,1	8,2	8,0	8,1	8,1	8,2	8,0	8.1	8.1	18	2 8
Sauersion	l/gm	1	10,4	6,3	10,0	11,2	9,4	10,6	10,6	9.3	80	10.5	101	- 5
Geruch	ì	ohne anormale Veränderung	ohne	ohne	ohne	ohne	ohne	ohno	oudo	oudo	0.0	2	2	0,01
Geschmack	1	ohne anormale	ohno	outo	ou do				2	2 5	all lo	oune	opne	ohne
Physikalisch-Chemischen Parameter	Smeler	Veränderung		2	allio	onine	onne	ohne	ohne	ohne	ohne	ohne	ohne	ohne
Carpina (CAV Anders						/2								
Tribuna (See 150 mil)	E	0,0	\$0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,0>	<0,0>	<0,0>	<0,05	<0.05
Chirocopyant		0,	01.0	0,13	<0,10	0,14	0,18	<0,10	<0,1	<0,1	<0,1	<0,1	<0.1	<0.1
Daestonovités	Memory	1	1,55	1,75	2,45	1,28	2,20	1,55	1,46	2,38	1,76	1,51	1.60	2.40
Kationen (Auszug):	MILIONI	1	<0,01	0,03	0,03	0,05	20'0	0,04	0,04	70,0	0,04	80'0	80'0	0.07
Colours (Cooked):												II.		
Macadim	ı/gm	1	27.7	29,6	40,6	25,8	38,4	30,1	26,2	38,7	32,9	28.8	26.4	38.0
Magnesium	mg/l		7,77	9,57	16,5	7,32	11,3	7,98	7,76	14.4	9.62	7.31	11.2	15.0
Nathum	l/gm	200	7,79	9,35	11,9	8,00	11,3	9,41	8,06	11.8	10.6	99 6	7 13	11.7
Kailum	mg/l	1	1,84	2,27	3,99	1,44	2,98	1,88	1.96	4.17	2.39	2.55	2.40	4.42
Eisen	Иĝш	0,200	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01	<0.07	\$0.03	2000
Marigali	mg/l	0,050	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0.005	<0.005	>0.005	10000
Aluminium	mg/l	0,200	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01	S0.01
Arrilliothurri	l/gm	0,50	<0.02	<0,02	<0,02	<0,02	<0,02	<0,02	0,030	<0,02	<0.02	<0.02	<0.02	<0.00
Allower (Auszug):													li li	
Will	mg/l	0,50	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01
Villelia	mg/l	750	13	18	25	16	22	15	12	25	18	16	17	25
Nual	mg/t	20	12	12	10	11	9,2	12	12	7'6	6,3	13	10	07.
Suitat	mg/l	250	23	25	28	22	30	22	23	27	23	23	22	97
berechnete Parameter:													77	17
Gesamthärte	HÞ.	ı	5,7	6,3	9,5	5,3	8,0	6.1	5.5	8.7	89	5.7	6.3	
Carboanthärte	HÞ.	(1)	4,2	4,8	6.7	3,4	0'9	4.2	3.9	6.5	8 8		2,0	0,8
Sättigungsindex	1	1	-0,0010	880'0-	0,088	-0,36	0.12	-0.060	-0 15	6,0	09000	0,0	4,3	0,0
pH·C	1		8,30	8,10	7,90	8.30	7.95	8 19	8 31	7 000	0,0000	200	-0,13	0,14
Calcitiösekapazität	l/gm	5	0,0	6'0	-1,5	2.7	-18	3 5 6	10,01	0.7	0,11	07'0	8,22	55.
								?!>	7',	£11_	7,5	1,7	1,2	-2,2

Seite 2 von 3

Übersicht Trinkwasser - TWA Kulmbach

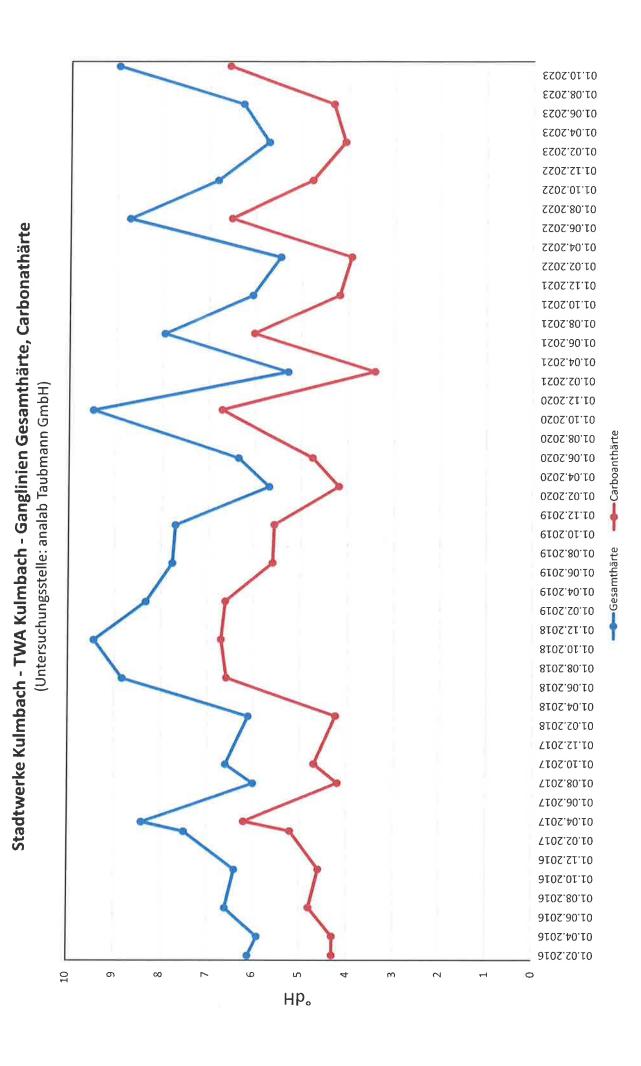
Untersuchungsstelle: **analab** Taubmann GmbH Am Berlein 3, 95336 Mainleus-Rothwind

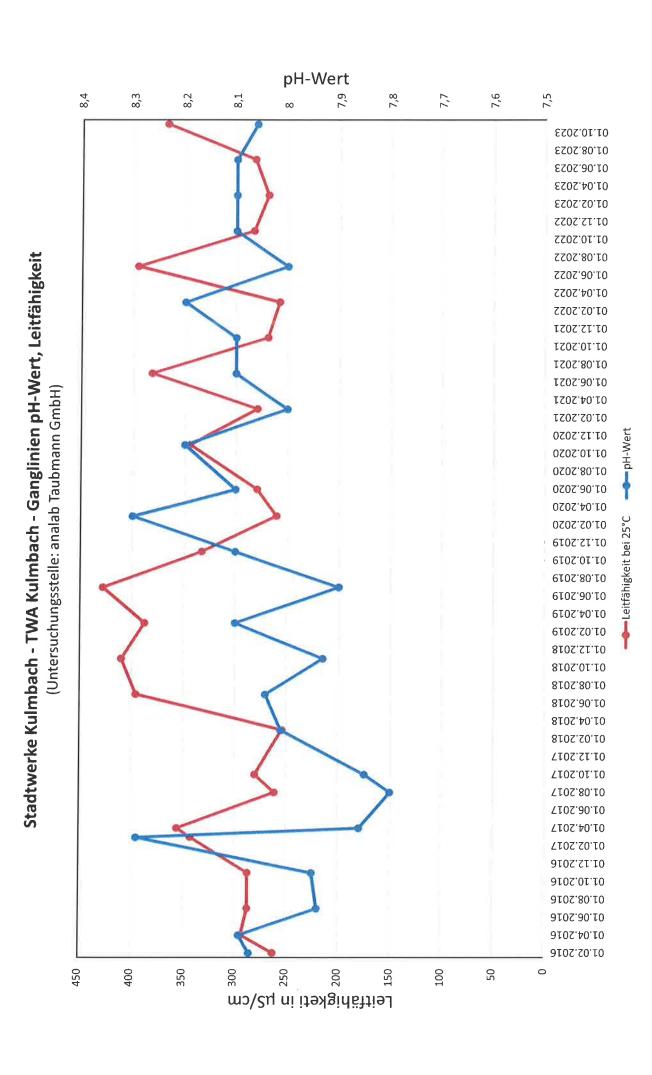
						l			14.03.2022	04.07.2022	07.11.2022	13.03.2023	03 07 2023	06.11.2023
į	Proben	Probenhamestelle:	TWA Kulmbach	TWA Kulmbach TWA Kulmbach	TWA Kulmbach	TWA Kulmhach			٠				ı	
Mischung (Brunnen/TWA Grundmühle) in %;	TWA Grundn	ıühle) in %:					2	I WA Kulmbach	ach	TWA Kulmbach	TWA Kulmbach	TWA Kulmbach	TWA Kulmbach	TWA Kulmbach
	Obje	Objektkennzahl	1230/5834/00052	1230/5834/00052	_		65/35	_		59/41	59/41	50/50		
		Prohe-Nr -	_	-	-	15	1230/5834/00052	12	52	1230/5834/00052	1230/	1230/5834/00052	1230/5834/00052	1230/5834/00052
		1		Z-0600007	2011005-1	2103342-2	2107075-1	2111168-2	2203255-4	2207055-1	_	2303269-2	2307013-1	2311128-1
Parameter	Finheit	GW T	Moreover											
Nitrat/50+Nitrit/3	ma/l	4	McSSWell 0.24	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert	Mosswort
Anlage 1, Teil 1 TrinkwV 2001 a.F.	и		47'0	0,23	0,20	0,23	0,18	0,23	0,25	0,19	0,19	0.26	0.21	0.18
Escherichia coli	KBE/400ml											22,7	17'0	0.10
Enterokokken	NBE/TOOM!		0	0	0	0	0	0	0	c	C			
Anlane 2 Toil 1 Triobow/ 2001 a F	NDE/IOU(III	0	0	0	0	0	0	0	0					0
THE STATE OF THE PARTY AND THE STATE OF THE													0	0
Acrylamid	l/gm	0,00010	<0,0001	E	1	<0.0001			100000					
Benzol	μgη	1,0	<0,3	<0,3	<0.3	×0.3	003	1 6	100010>	1	1	<0,0001	Ė	1
Bor	mg/l	1,0	<0,1	0.1	- CD 1	2.0	2,0	50,3	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3
Bromat	l/gm	0.010	<0.003	<0 D03	5000	- '0'	1,0>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0.1
Chrom	ша/і	0.025	20005	200,00	500,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0.003	<0.003
Cvanid	l/om	020,0	600,0	con'n>	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0.005	<0.00	50000
1.2 Dichlorathan	1,6111	oco'o	Z00,U2	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0.002	<0.00	20000	2000	2000,00
The Control of the Co	l/Brl	3,0	<0,5	<0,5	<0,5	<0,5	<0,5	<0.5	<0.5	<0.5	100,0	700,00	70,00	70,002
PILOPIL	l/gm	1,5	090'0	080'0	0,080	090'0	0,050	0.070	0200	0000	6,00	6,02	<0,5	40,5
Nitrat	l/gm	20	12	12	10	11	26	12	200	0000	non'n	050,0	080'0	0,080
PSM-Summe	l/grt	0,5	0	<bg< td=""><td><bg< td=""><td>0</td><td>SBG.</td><td>SBS</td><td>7.</td><td>1'6</td><td>2,5</td><td>13</td><td>10</td><td>6,8</td></bg<></td></bg<>	<bg< td=""><td>0</td><td>SBG.</td><td>SBS</td><td>7.</td><td>1'6</td><td>2,5</td><td>13</td><td>10</td><td>6,8</td></bg<>	0	SBG.	SBS	7.	1'6	2,5	13	10	6,8
Quecksilber	mg/l	0,0010	<0,0002	<0,0002	<0.0002	<0.0000	<0.0000>	2000	0000	282	SBC.	0	<8G	<bg< td=""></bg<>
Seten	l/gm	0,010	<0,001	0,003	<0.001	<0.001	2000	20,000	2000,0>	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002
Tetra-/Trichlorethen	l/Brl	10	₹	₹	V	7	200,0	0,003	0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Uran	VBrl	10	2.9	3.4	7.1	000	1 1	Į.	v	<u>-</u>	₹	<1	۷.	7
Anlage 2, Teil 2 TrinkwV 2001 a	a,F.:					2,0	9',	2,5	2,8	7,3	3,8	3,0	4,0	0'2
Antimon	l/pm	0.0050	<0.001	20 004	10000						E: 71	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Arsen	l/om	0010	0.003	100,00	00.00	100,05	<0,001	<0,001	<0,001	<0,001	<0,001	0,002	<0,001	<0,001
Benzo-(a)-pyren	nay	0100	2000	500,00	50,003	<0,003	<0,003	<0,003	<0,003	0,005	<0,003	<0,003	0,004	<0.003
Blei	mo/l	0,000	20000	50,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0.003	<0.003
Cadmium	l'om	0,000	20,000	<0,003	<0,003	0,005	0,004	<0,003	<0,003	0,004	<0,003	<0,003	<0.003	<0.003
Epichlorhydrin	l'ou	0,000	600000	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,000,0>	<0,0005	<0,000,0>	<0.0005	<0.0005
Kupfer	lom.	200	100	1 3	1	40.1	,	:	<0,1	1	1	<0.0001	ī	1
Nickel	l/om	0000	10.00	CO,U1	<0,01	0,023	<0,01	<0,01	<0.01	<0,01	<0,01	<0.01	<0.01	<0.01
Nitrit	l/bm	0,020	700'0	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0.002	<0.002	<0.007
PAK (Summe-TVO)	1011	0,50	10,05	<0,01	<0.01	<0,01	<0,01	<0,01	<0.01	<0,01	<0,01	<0.0>	<0.01	<0.01
THM	l'bis	2	10'0	10,0>	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01	<0,01	<0.01	<0.01	<0.01
Vinvichlorid	1,000	30000	Ly	√ .	⊽	₹	₹	<1	7	5	₹	₹	₹	1
Anlage 3, Teil 1 TrinkwV 2001 a F		0,000,0	1000,05	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0.0001	<0.0001
Aluminium	ma/l	0 200	<0.01	1000	20.0									
Ammonium	l/om	0.50	50.05	10'0	10'0	50,07	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01
Chlorid	mo/l	250	20'02	20,02	20°0>	<0,02	<0,02	<0,02	0,030	<0,02	<0,02	<0,02	<0.02	<0.02
Eisen	low.	0000	600	20 3	25	16	22	15	12	25	18	16	17	25
Färbung (SAK 436nm)	1	0,200	10,0	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01	<0.01
Good		ohne anormale	<0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	<0,05	<0,05	<0,05	<0,05	<0,0>	<0.05	<0.05	<0.05	30.07	20.00	0,0
										00.00	20,00	CO'O	00.05	(I) (I)

Übersicht Trinkwasser - TWA Kulmbach

Untersuchungsstelle: **analab** Taubmann GmbH Am Berlein 3, 95336 Mainleus-Rothwind

	06 11 2023	TWA Kulmbach TAWA Kulmbach TAWA Kulmbach	I WA KUIMBACH	201.00	32/65	1	1230/5834/00052	. 00777	7-8711128			Moccoort	TOMPSOM!
	03.07.2023	TAYA 14.11-1-1-1	I WA AUIINDACH	EAIAG	04/40	400001000100010	123U70534/UUU52	4 0407000	2307013-1			Messword	
	13.03.2023	TAKA Kulmhooh	I Ven Mullibade	50/50	20/20	1230/6624/00052 4220/6224/022	200004C001007	2303260.2	7-607500-7			Messwert	
	07.11.2022	TWA Kulmhach	DECEMBER 1	59/41	1100	1230/5834/00052		2211101.3	0-1011127			Messwert	
	04.07.2022	TWA Kulmhach		59/41		1230/5834/00052	20000	2207055-1				Messwert	
44 00 0000	14.03.2022	TWA Kulmbach TWA Kulmbach TWA Kulmbach TWA Kulmbach TWA Kulmbach T		31/69		1230/5834/00052		2203255-4				Messwell	
14 2024	00.11.2021	TWA Kulmbach		96/34		1230/5834/00052 1230/5834/00052		2111168-2			Management	Messwell	
05.07.2024	1707.10.00	TWA Kulmbach	1010	02/32	100000000000000000000000000000000000000	1230/5834/00052	Ī	2107075-1			Moreum	I DANCE THE	ohoo
15.03.2021		TWA Kulmbach	20 071 2	2,11,0,02	•••	1230/3634/00032	04000000	Z-2455012			Messwert	Š	ohne
02.11.2020		I www. Kulmbach	4				2044005	1-0001107			Wesswert		ohne
29.06.2020	Prohenhamestelle: TWA Kulmback Trans Kalant	I VVA Nullingach	1		Operticentzani: 1230/5834/00052 1230/5834/00052 1230/5834/00052	700000000000000000000000000000000000000	2008500 2	20000002			Messwert		ohne
Probenahmedatum: 09.03.2020	TAVA Kulmhach	I DEGILIDAN VAA	ı		1230/5834/00052		2003204-2			Manager	Messwell		ohne
ahmedatum:	hamactalla.	The state of the s	nune) in %:	1.4	*KTKennzani:		Probe-Nr : 2003204-2	J		Finheit CW	CAR IMPRAS	ohne anormale	Veranderimo
Probeni	Prober	VAVE.	I NAM GLUNDI		ă	•				Finheit			
		Misching (Bringer	No of the second (Something of the second							Parameter		Peschmack	No Pillipoon


Parameter	Finhois	1000												
diamond		GVV TrinkwV	Messwert	Messwert	Messwert	Messwert	Mossimo	Management						
Geschmack		ohne anormale					INCOORCIL	Messwell	Messwert	Messwert	Messwert	Messwert	Messwert	Messwert
		Veränderung	oune	ohne	ohne	ohne	ohne	ando	Opho	- Parker				
Leitfähigkeit bei 25°C	mS/cm	2790	260	070	27.0			2	בוונס	orme	onne	ohne	ohne	ohne
Manager				617	343	2/9	382	269	258	306	000	000	1	
Mangan	l/gm	0,050	<0.005	<0.005	<0.005	30000	1000			000	707	607	787	368
Natrium				-	2000	500,05	<0.00	<0,005	<0.005	<0.005	<0.00	-0.00E	2000	1000
III	l/gm	500	7.79	9.35	110	90.0	0.77			2001	20010	COO'O	c00,0>	con'n>
001		open anomala			0,11	90,0	5,11	9,41	8,06	11.8	10.6	996	7.49	117
202	∥gш	Verandenno	99'0	9,1		10	1.5	000			212	00,2	71",	1,,
Ovidiorharkoit						2	7'1	0,00	-	0.74	45	14	0.69	0.73
CANADA NEIL	Mg/m	0,50	i	1	1								20,0	2.'5
Sulfat	0	-					ı	1	!)				
Odilat	mg/l	062	23	25	28	22	00							1
Tribing	the Late	, ,			24	77	8	7.7	23	27	23	23	22	7.0
5	101	0,1	0,10	0.13	<0.10	0.14	0.40	0,0					7	77
pH-Wert		20 20	000			1.10	0,10	01,0>	<0,1	÷0,1	6	0.1	<0.1	- CO
		C'8 - C'0	08,8	8,10	8.20	8.00	8 40	0,00	20.00					·
Calcitlösekanazität	1/200	4	0				0,10	0,10	8,20	8,00	8,10	8.10	8 10	8.08
	Ingin.	0	0,0	6,0	-1,5	2.7	00	20	- 10					2012
							25	0,0	7',	4'L-	-0,1	1,7	1.2	-2.2


01.10.2023 6202.80.10 01.06.2023 01.04.2023 01.02.2023 01.12,2022 01.10.2022 01,08,2022 2202.90.10 Stadtwerke Kulmbach - TWA Kulmbach - Ganglinien Kationen (Ca, Mg, K, Na) 01.04.2022 01.02.2022 01.12.2021 1202.01.10 1202.80.10 1202.30.10 1202.40.10 -- Natrium 01.02.2021 (Untersuchungsstelle: analab Taubmann GmbH) 01.12.2020 01.10.2020 01.08.2020 01.06.2020 Kalium 01.04.2020 01.02.2020 01.12.2019 01.10,2019 01.08.2019 01.06.2019 01.04.2019 01.02.20.10 8102.21.10 8102.01.10 8102.80.10 01.06.2018 8102,40.10 01.02.2018 01.12.2017 01.10.2017 7102.80.10 7105.30,10 01.04.2017 01,02,2017 9102,21.10 9102.01.10 9102.80.10 9102.90.10 01.04.2016 01.02,20,16 45 35 30 25 20 40 10 2 0 15 I\8m

01.10.2023 6202.80.10 01.06.2023 01.04.2023 01.02.2023 01.12.2022 01.10.2022 2202.80.10 01,06,2022 2202.40.10 01.02.2022 1202.21.10 1202.01.10 1202.80.10 1202,30.10 1202.40.10 1202.20.10 (Untersuchungsstelle: analab Taubmann GmbH) 01.12,2020 01.10.2020 Sulfat 02.02.80.10 01.06.2020 01.04.2020 01.02.2020 01.12.2019 01.10.2019 6102.80.10 01.06.2019 01,04,2019 01.02.2019 01.12.2018 8102.01.10 8102.80.10 8102.30.10 01.04.2018 01.02.2018 7102,21,10 7102.01.10 7102.80.10 7102.30.10 01.04.2017 01.02.2017 9102,21,10 01.10.2016 9102.80.10 9102.30.10 01.04.2016 01.02.20.10 10 15 2 0 35 30 25 20 I/8m

Stadtwerke Kulmbach - TWA Kulmbach - Ganglinien Anionen(Cl, NO3, SO4)

01,10,2023 6202,80,10 01.06.2023 01.04.2023 01.02.2023 01.12.2022 01.10.2022 01.08.2022 01.06.2022 01.04.2022 01.02.2022 Stadtwerke Kulmbach - TWA Kulmbach - Ganglinien Natrium, Chlorid 1202,21,10 1202.01.10 1202.80.10 1202,30,10 1202.40.10 01.02.2021 (Untersuchungsstelle: analab Taubmann GmbH) 01.12.2020 01.10.2020 01.08.2020 01.06.2020 Natrium 01.04.2020 01.02.2020 01.12.2019 01,10,2019 01,08,2019 01.06.2019 01.04.2019 01.02.20.19 8102.21.10 8102.01.10 01.08.2018 8102.30.10 8102.40.10 8102.20.10 01.12.2017 01.10.2017 7102.80.10 7105.30.10 01,04,2017 01.02.2017 01.12.2016 01.10.2016 01.08.2016 9102.90.10 01.04.2016 01.02.2016 **1\8**m 21 10 30 20 25

